Name:	NTI Day	7 Teacher:	
Find the slope between the following points: $(-9,10)$, and $(0,-2)$	Find the slope between the following points: $(-2,3)$, and $(-7, -2)$	Find the slope between the following points: $(8, -4)$, and $(2, -4)$	Find the slope between the following points: $(-9,4)$, and $(-6,0)$
Write the equation of the line in slope intercept form.	Write the equation of the line in slope intercept form.	Write the equation of a line in slope intercept form that has a slope of $\frac{1}{3}$ and has a y-intercept of 5.	Write the equation of a line in slope intercept form that has a slope of $\frac{2}{5}$ and has a y-intercept of 1.
Find the value of x below: 4 + 16x	Graph A(0,0), P(1,5) and E(2,1) and then rotate it 90° clockwise about the origin.	Point $A(3, -9)$ is reflected across the line $y = x$ to make point A'. If A and A' are opposite corners of a rectangle, what would the area of the rectangle be?	Find the value of x below 480° 11x + 3 11x + 3 11x + 3
Prove using a series of transformations that $\overline{BA} \cong \overline{DA}$ A B R D C	-5 0 5 -5 -5	The vertices of ΔPQR are $P(10, -6)$, $Q(6, 2)$, and $R(4, -1)$. What translation places the image of the triangle entirely in Quadrant II?	Prove using a series of transformations that $\angle EOP \cong \angle GOF$ F \overline{F} \overline{G} \overline{J} \overline{F} \overline{H}
The measures of the angles in a triangle have a ratio of 1:4:7. Find the measures of these angles.	Solve for x in the triangle: 70° 50° x + 66	 Always, Sometimes, Never 1. Right triangles have an acute angle in them 2. The sum of all angles in a triangle is 180° 3. If two triangles are isosceles, then they are ≅ 	Solve for x in the triangle: 74° $6x + 17$ 35°
3x-12 y+16 A 12 E 12 B	Given that \overline{CE} is a perpendicular bisector, find the length of: \overline{AC} \overline{DE}	E K H	E, G, and K are midpoints. If $\overline{EK} = 5$, $\overline{EG} = 7$, and $\overline{FD} = 18$, then find the perimeter of ΔEGK , then find the perimeter of ΔDFH .
Solve for x and y in the figure: 49 6x - 4 8y - 7 32	ABCD is a parallelogram. Use a system to find x and y if $\overline{AB} = 6x + 30$, $\overline{BC} = 2x - 5$, $\overline{CD} = 2y - 10$, and $\overline{AD} = y - 35$.	Solve for b in the figure:	A parallelogram has vertices $A(-1, 6)$, $B(5, 6)$, C(3, -2), and $D(-3, -2)$. The diagonals intersect at point P. What are the coordinates of
A parallelogram has vertices <i>J</i> (-3, 9), <i>K</i> (3, 9), <i>L</i> (1, 1), and <i>M</i> (-5, 1). Show opposite sides are congruent by using the distance formula.	Solve for x and y in the figure: $(3x + 14)^{\circ}$ $(2x - 4)^{\circ}$ $2y^{\circ}$	In rectangle <i>ABCD</i> , the diagonals intersect at point <i>E</i> . Find the value of x and y if $\overline{BE} = 3x + 1$, $\overline{ED} = x + 7$ and $\overline{EC} = 5y$.	F find the length of \overline{AP} and \overline{CP} . Find the length of \overline{BP} and \overline{DP} .

@ One Stop Teacher Shop & @ BOOM! Feeny Math Resources

	What conclusion can you draw from this?

My Work

Monday	Tuesday			
Wednesday	Thursday			

My Progress

MONDAY	TUESDAY	WEDNESDAY	THURSDAY
# of questions	# of questions	# of questions	# of questions
# correct	# correct	# correct	# correct
I need more help			
with	with	with	with
